LaTex (2) Basic Math Symbols

1, Greek letters

SyntaxDisplaySyntaxDisplay
\alpha\(\alpha\)\beta\(\beta\)
\gamma\(\gamma\)\delta\(\delta\)
\epsilon\(\epsilon\)\zeta\(\zeta\)
\eta\(\eta\)\theta\(\theta\)
\iota\(\iota\)\kappa\(\kappa\)
\lambda\(\lambda\)\mu\(\mu\)
\nu\(\nu\)\xi\(\xi\)
\pi\(\pi\)\rho\(\rho\)
\sigma\(\sigma\)\tau\(\tau\)
\upsilon\(\upsilon\)\phi\(\phi\)
\chi\(\chi\)\psi\(\psi\)
\omega\(\omega\)

In addition, each Greek letter has lowercase, uppercase and italic three display formats. Take π as an example:

syntaxdisplaysyntaxdisplaysyntaxdisplay
\pi\(\pi\)\Pi\(\Pi\)\varPi\(\varPi\)

2, operator

SyntaxDisplay
x + y\(x + y\)
x \oplus y\(x \oplus y\)
x - y\(x -y\)
x \ominus y\(x \ominus y\)
x \times y\( x \times y\)
x \otimes y\(x \otimes y\)
x \bigotimes y\(x \bigotimes y\)
x \cdot y\( x \cdot y\)
x \odot y\(x \odot y\)
x \bigodot y\(x \bigodot y\)
x \ast y
x * y
\( x * y\)
x \star y\(x \star y\)
x \div y\( x \div y\)
x \pm y
x \mp y
\(x \pm y\)
\(x \mp y\)
x = y\(x = y\)
x \neq y\( x \neq y\)
x < y\(x < y\)
x \nless y\(x \nless y\)
x > y\(x > y\)
x \ngtr y\(x \ngtr y\)
x \leq y\(x \leq y\)
x \nleqslant y\(x \nleqslant y\)
x \geq y\(x \geq y\)
x \ngeqslant y\(x \ngeqslant y\)
x \ll y\(x \ll y\)
x \gg y\(x \gg y\)
x \doteq y\(x \doteq y\)
x \sim y\(x \sim y\)
x \not\sim y\(x \not\sim y\)
x \simeq y\(x \simeq y\)
x \not\simeq y\(x \not\simeq y\)
x \approx y\(x \approx y\)
x \not\approx y\(x \not\approx y\)
x \asymp y\(x \asymp y\)
x \not\asymp y\(x \not\asymp y\)
x \cong y\(x \cong y\)
x \not\cong y\(x \not\cong y\)
x \equiv y\(x \equiv y\)
x \not\equiv y\(x \not\equiv y\)

Set operators:

SyntaxDisplay
x \in y\(x \in y\)
x \notin y\(x \notin y\)
x \ni y\(x \ni y\)
x \not\ni y\(x \not\ni y\)
x \subset y\(x \subset y\)
x \subseteq y\(x \subseteq y\)
x \sqsubset y\(x \sqsubset y\)
x \sqsubseteq y\(x \sqsubseteq y\)
x \not\sqsubset y\(x \not\sqsubset y\)
x \not\sqsubseteq y\(x \not\sqsubseteq y\)
x \not\subset y\(x \not\subset y\)
x \not\subseteq y\(x \not\subseteq y\)
x \subsetneqq y\(x \subsetneqq y\)
x \supset y\(x \supset y\)
x \supseteq\(x \supseteq y\)
x \sqsupset y\(x \sqsupset y\)
x \sqsupseteq y\(x \sqsupseteq y\)
x \not\sqsupseteq y\(x \not\sqsupseteq y\)
x \not\sqsupset y\(x \not\sqsupset y\)
x \not\supseteq y\(x \not\supseteq y\)
x \not\supseteq y\(x \not\supseteq y\)
x \supsetneqq y\(x \supsetneqq y\)
x \cup y\(x \cup y\)
x \cap y\(x \cap y\)
\emptyset\(\emptyset\)
\varnothing\(\varnothing\)

3, superscript and subscript

SyntaxDisplay
_ and ^\({a_n}^2\)
\vec\(\vec a\)
\(\vec {ab}\)
\overrightarrow\(\overrightarrow a\)
\(\overrightarrow {ab}\)
\hat\(\hat a\)
\overline\(\overline a\)
\underline\(\underline a\)
\overbrace\(\overbrace{a+b}^{2.0}\)
\underbrace\(\underbrace{a+b}_{2.0}\)

4. Arrow

One-way arrow:

SyntaxDisplay
\uparrow\(\uparrow\)
\Uparrow\(\Uparrow\)
\upharpoonleft\(\upharpoonleft\)
\upharpoonright\(\upharpoonright\)
\upuparrows\(\upuparrows\)
\downarrow\(\downarrow\)
\Downarrow\(\Downarrow\)
\downharpoonleft\(\downharpoonleft\)
\downharpoonright\(\downharpoonright\)
\downdownarrows\(\downdownarrows\)
\leftarrow\(\leftarrow\)
\Leftarrow\(\Leftarrow\)
\longleftarrow\(\longleftarrow\)
\Longleftarrow\(\Longleftarrow\)
\leftharpoonup\(\leftharpoonup\)
\leftharpoondown\(\leftharpoondown\)
\leftleftarrows\(\leftleftarrows\)
\rightarrow\(\rightarrow\)
\Rightarrow\(\Rightarrow\)
\longrightarrow\(\longrightarrow\)
\Longrightarrow\(\Longrightarrow\)
\rightharpoonup\(\rightharpoonup\)
\rightharpoondown\(\rightharpoondown\)
\rightrightarrows\(\rightrightarrows\)

Double arrow:

SyntaxDisplay
\leftrightarrow\(\leftrightarrow\)
\Leftrightarrow\(\Leftrightarrow\)
\longleftrightarrow\(\longleftrightarrow\)
\Longleftrightarrow\(\Longleftrightarrow\)
\updownarrow\(\updownarrow\)
\Updownarrow\(\Updownarrow\)
\rightleftharpoons\(\rightleftharpoons\)
\leftrightharpoons\(\leftrightharpoons\)

Other arrows:

SyntaxDisplay
\swarrow\(\swarrow\)
\nearrow\(\nearrow\)
\nwarrow\(\nwarrow\)
\searrow\(\searrow\)

5, font

fontsyntaxdisplay
default{A}\({ABCDEFG}\)
Isoline\sf{A}\(\sf{ABCDEFG}\)
Printer Body\tt {A}\(\tt {ABCDEFG}\)
Roman\rm {A}\(\rm {ABCDEFG}\)
Arial\bf {A}\(\bf {ABCDEFG}\)
Blackboard Bold\Bbb{A}\(\Bbb{ABCDEFG}\)
Italian\it{A}\(\it{ABCDEFG}\)
German font\frak{A}\(\frak{ABCDEFG}\)

6, blank and omitted

DescriptionSyntaxDisplay
Noneab\(ab\)
Spacea\ b\(a\ b\)
4 spaces (Tab)a\quad b\(a\quad b\)
ellipsis (down)1,2,\ldots,n\(1,2,\ldots,n\)
ellipsis (middle)x_1^2 + x_2^2 + \cdots + x_n^2\(x_1^2 + x_2^2 + \cdots + x_n^2\)

7, Matrix

DescriptionSyntaxDisplay
Basic\begin{matrix}1&0&0\\0&1&0\\0&0&1\\\end{matrix}\(\begin{matrix}1&0&0\\0&1&0\\0&0&1\\\end {matrix}\)
Bracket border\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\\\end{pmatrix}\(\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\\ \end{pmatrix}\)
Bracket border\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\\\end{bmatrix}\(\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\\ \end{bmatrix}\)
Brace border\begin{Bmatrix}1&0&0\\0&1&0\\0&0&1\\\end{Bmatrix}\(\begin{Bmatrix}1&0&0\\0&1&0\\0&0&1\\ \end{Bmatrix}\)
Single vertical line border\begin{vmatrix}1&0&0\\0&1&0\\0&0&1\\\end{vmatrix}\(\begin{vmatrix}1&0&0\\0&1&0\\0&0&1\\ \end{vmatrix}\)
Double vertical bar border\begin{Vmatrix}1&0&0\\0&1&0\\0&0&1\\\end{Vmatrix}\(\begin{Vmatrix}1&0&0\\0&1&0\\0&0&1\\ \end{Vmatrix}\)

Additionally, ellipses can be used in matrices.

  • Horizontal ellipsis: \cdots ( \(\cdots\))
  • Vertical ellipsis: \vdots ( \(\vdots\))
  • Slash ellipsis: \ddots ( \(\ddots\))

example:

LaTeX
1
2
3
4
5
6
$$\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
\end{bmatrix}$$

The effect is as follows:

$$\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\\end{bmatrix}$$

8, array

Basic syntax:

  • start end: {array}
  • alignment statement

    • Align left: l
    • center: c
    • right alignment: r
  • Horizontal line: \hline

example:

LaTeX
1
2
3
4
5
6
$$\begin{array}{c|lll}
{↓}&{a}&{b}&{c}\\
\hline
{R_1}&{c}&{b}&{a}\\
{R_2}&{b}&{c}&{c}\\
\end{array}$$

The effect is as follows:

$$\begin{array}{c|lll}
{↓}&{a}&{b}&{c}\\
\hline
{R_1}&{c}&{b}&{a}\\
{R_2}&{b}&{c}&{c}\\
\end{array}$$

9, equation system

Declaration: {cases}

example:

LaTeX
1
2
3
4
5
6
$$\begin{cases}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3\\
\end{cases}
$$

The effect is as follows:

$$\begin{cases}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3\\
\end{cases}$$

10, function

SyntaxDisplaySyntaxDisplay
\sin\theta\(\sin \theta\)\cos\theta\(\cos \theta\)
\arcsin\frac{L}{r}\(\arcsin\frac{L}{r}\)\arccos\frac{T}{r}\(\arccos\frac{T} {r}\)
\sinh g\(\sinh g\)\cosh h\(\cosh h\)
\operatorname{sh}j\(\operatorname{sh}j\)\operatorname{argsh}k\(\operatorname{argsh}k\)
\operatorname{argch}l\(\operatorname{argch}l\)\operatorname{th}i\(\operatorname{th}i\)
k'(x)=\lim_{\Delta x\to 0}\frac{k(x)-k(x-\Delta x)}{\Deltax}\(k'(x)=\lim_ {\Delta x\to0} \frac{k(x)-k(x-\Delta x)}{\Delta x}\)\limsup S\(\limsup S\)
\max H\(\max H\)\min L\(\min L\)
\sup t\(\sup t\)\exp t\(\exp t\)
\lg X\(\lg X\)\log X\(\log X\)
\ker x\(\ker x\)\deg x\(\deg x\)
\Pr x\(\Pr x\)\det x\(\det x\)
\arg x\(\arg x\)\dim x\(\dim x\)
\tan\theta\(\tan \theta\)\arctan\frac{L}{T}\(\arctan\frac{L}{T}\)
\tanh i\(\tanh i\)\operatorname{ch}h\(\operatorname{ch}h\)
\operatorname{argth}m\(\operatorname{argth}m\)\liminf I\(\liminf I\)
\inf s\(\inf s\)\ln X\(\ln X\)
\log_\alpha X\(\log_\alpha X\)\gcd(T,U,V,W,X)\(\gcd(T,U,V,W,X)\ )
\hom x\(\hom x\)\lim_{t\to n}T\(\lim_{t\to n}T\)

Differentiation and Derivatives:

SyntaxDisplay
dt\(dt\)
\mathrm{d}t\( \mathrm{d}t\)
\partial t\( \partial t\)
\nabla\psi\( \nabla\psi\)
dy/dx\(dy/dx\)
\mathrm{d}y/\mathrm{d}x\( \mathrm{d}y/\mathrm{d}x\)
\frac{dy}{dx}\( \frac{dy}{dx}\)
\frac{\mathrm{d}y}{\mathrm{d}x}\( \frac{\mathrm{d}y}{\mathrm{d}x}\)
\frac{\partial^2}{\partial x_1\partial x_2}y\( \frac{\partial^2}{\partial x_1\partial x_2}y\)
\prime\(\prime\)
\backprime\( \backprime\)
f^\prime\( f^\prime\)
f'\( f'\)
f''\( f''\)
f^{(3)}\( f^{(3)}\)
\dot y\( \dot y\)
\ddot y\( \ddot y\)

Sum product, integral:

SyntaxDisplay
\sum_{k=1}^N k^2\(\sum_{k=1}^N k^2\)
\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}\(\begin{matrix} \sum_{k=1}^N k^2 \end{matrix }\)
\prod_{i=1}^N x_i\(\prod_{i=1}^N x_i\)
\begin{matrix} \prod_{i=1}^N x_i \end{matrix}\(\begin{matrix} \prod_{i=1}^N x_i \end{matrix}\)
\coprod_{i=1}^N x_i\(\coprod_{i=1}^N x_i\)
\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}\(\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}\)
\int_{-N}^{N} e^x\, {\rm d}x\(\int_{-N}^{N} e^x\, {\rm d}x\ )
\begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix}\(\begin{matrix} \int_{-N}^ {N} e^x\, \mathrm{d}x \end{matrix}\)
\iint_{D}^{W} \, \mathrm{d}x\,\mathrm{d}y\(\iint_{D}^{W} \, \mathrm{d}x\ ,\mathrm{d}y\)
\iiint_{E}^{V} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\(\iiint_{E}^{V} \ , \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\)
\oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y\(\oint_{C} x^3\, \mathrm{d} x + 4y^2\, \mathrm{d}y\)

11. Reference

LaTeX formula manual
https://www.cnblogs.com/1024th/p/11623258.html

LaTex (2) Basic Math Symbols

https://blog.tsinbei.com/en/archives/669/

Author
Hsukqi Lee
Posted on

2022-12-13

Edited on

2022-12-13

Licensed under

CC BY-NC-ND 4.0

Comments

Name
Mail
Site
None yet