LaTex (3) Complicate Formulas

LaTeX
1
\int _{b}^{a} f'( x) dx=f( b) -f( a)

Effect:

$$\int _{b}^{a} f'( x) dx=f( b) -f( a)$$

LaTeX
1
\underbrace{\frac{1}{4} W_{\mu \nu } \cdot W^{\mu \nu } -\frac{1}{4} B_{\mu \nu } B^{\mu \ nu } -\frac{1}{4} G_{\mu \nu }^{a} G_{a}^{\mu \nu }}_{\mathrm{kinetic\ energies\ and\ self-interactions\ of \the\ gauge\ bosons}}

Effect:

$$\underbrace{\frac{1}{4} W_{\mu \nu } \cdot W^{\mu \nu } -\frac{1}{4} B_{\mu \nu } B^{\ mu \nu } -\frac{1}{4} G_{\mu \nu }^{a} G_{a}^{\mu \nu }}_{\mathrm{kinetic\ energies\ and\ self-interactions \ of\ the\ gauge\ bosons}}$$

LaTeX
1
\Vert x+y\Vert \geq \bigl|\Vert x\Vert -\Vert y\Vert \bigr|

Effect:

$$\Vert x+y\Vert \geq \bigl|\Vert x\Vert -\Vert y\Vert \bigr|$$

LaTeX
1
2
\nabla \cdot \mathbf{D} =\rho \ \mathrm{and} \ \nabla \cdot \mathbf{B} =0\
\nabla \times \mathbf{E} =-\frac{\partial \mathbf{B}}{\partial t} \ \mathrm{and} \ \nabla \times \mathbf{H} =\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}

Effect:

$$\nabla \cdot \mathbf{D} =\rho \ \mathrm{and} \ \nabla \cdot \mathbf{B} =0$$
$$\nabla \times \mathbf{E} =-\frac{\partial \mathbf{B}}{\partial t} \ \mathrm{and} \ \nabla \times \mathbf{H} =\mathbf{J } +\frac{\partial \mathbf{D}}{\partial t}$$

LaTeX
1
y=\frac{\sum\limits _{i} w_{i} y_{i}}{\sum\nolimits _{i} w_{i}} \ \ ,i=1,2...k

$$y=\frac{\sum\limits _{i} w_{i} y_{i}}{\sum\nolimits _{i} w_{i}} \ \ ,i=1,2...k $$

LaTeX
1
e=\lim\limits _{n\rightarrow \infty }\left( 1+\frac{1}{n}\right)^{n}

Effect:

$$e=\lim\limits _{n\rightarrow \infty }\left( 1+\frac{1}{n}\right)^{n}$$

LaTeX
1
\dot{x}_{i} =a_{i} x_{i'} -( d+a_{i0} +a_{i1}) x_{i} +rx_{i}( f_{i} -\phi )

Effect:

$$\dot{x}_{i} =a_{i} x_{i'} -( d+a_{i0} +a_{i1}) x_{i} +rx_{i}( f_{i} - \phi )$$

LaTex (3) Complicate Formulas

https://blog.tsinbei.com/en/archives/670/

Author
Hsukqi Lee
Posted on

2022-12-13

Edited on

2022-12-13

Licensed under

CC BY-NC-ND 4.0

Comments

Name
Mail
Site
None yet