1 | \int _{b}^{a} f'( x) dx=f( b) -f( a) |
Effect:
$$\int _{b}^{a} f'( x) dx=f( b) -f( a)$$
1 | \underbrace{\frac{1}{4} W_{\mu \nu } \cdot W^{\mu \nu } -\frac{1}{4} B_{\mu \nu } B^{\mu \ nu } -\frac{1}{4} G_{\mu \nu }^{a} G_{a}^{\mu \nu }}_{\mathrm{kinetic\ energies\ and\ self-interactions\ of \the\ gauge\ bosons}} |
Effect:
$$\underbrace{\frac{1}{4} W_{\mu \nu } \cdot W^{\mu \nu } -\frac{1}{4} B_{\mu \nu } B^{\ mu \nu } -\frac{1}{4} G_{\mu \nu }^{a} G_{a}^{\mu \nu }}_{\mathrm{kinetic\ energies\ and\ self-interactions \ of\ the\ gauge\ bosons}}$$
1 | \Vert x+y\Vert \geq \bigl|\Vert x\Vert -\Vert y\Vert \bigr| |
Effect:
$$\Vert x+y\Vert \geq \bigl|\Vert x\Vert -\Vert y\Vert \bigr|$$
1 | \nabla \cdot \mathbf{D} =\rho \ \mathrm{and} \ \nabla \cdot \mathbf{B} =0\ \nabla \times \mathbf{E} =-\frac{\partial \mathbf{B}}{\partial t} \ \mathrm{and} \ \nabla \times \mathbf{H} =\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} |
Effect:
$$\nabla \cdot \mathbf{D} =\rho \ \mathrm{and} \ \nabla \cdot \mathbf{B} =0$$
$$\nabla \times \mathbf{E} =-\frac{\partial \mathbf{B}}{\partial t} \ \mathrm{and} \ \nabla \times \mathbf{H} =\mathbf{J } +\frac{\partial \mathbf{D}}{\partial t}$$
1 | y=\frac{\sum\limits _{i} w_{i} y_{i}}{\sum\nolimits _{i} w_{i}} \ \ ,i=1,2...k |
$$y=\frac{\sum\limits _{i} w_{i} y_{i}}{\sum\nolimits _{i} w_{i}} \ \ ,i=1,2...k $$
1 | e=\lim\limits _{n\rightarrow \infty }\left( 1+\frac{1}{n}\right)^{n} |
Effect:
$$e=\lim\limits _{n\rightarrow \infty }\left( 1+\frac{1}{n}\right)^{n}$$
1 | \dot{x}_{i} =a_{i} x_{i'} -( d+a_{i0} +a_{i1}) x_{i} +rx_{i}( f_{i} -\phi ) |
Effect:
$$\dot{x}_{i} =a_{i} x_{i'} -( d+a_{i0} +a_{i1}) x_{i} +rx_{i}( f_{i} - \phi )$$
LaTex (3) Complicate Formulas
Comments